§ 63.4363 (1) Use Method 25 if the add-on control device is an oxidizer and you expect the total gaseous organic concentration as carbon to be more than 50 parts per million (ppm) at the control device outlet. (2) Use Method 25A if the add-on control device is an oxidizer and you expect the total gaseous organic concentration as carbon to be 50 ppm or less at the control device outlet. Method 25A must be used to demonstrate compliance with the oxidizer outlet organic HAP concentration limit. (3) Use Method 25A if the add-on control device is not an oxidizer. (c) If two or more add-on control devices are used for the same emission stream, then you must measure emissions at the outlet to the atmosphere of each device. For example, if one addon control device is a concentrator with an outlet to the atmosphere for the high-volume, dilute stream that has been treated by the concentrator, and a second add-on control device is an oxidizer with an outlet to the atmosphere for the low-volume, concentrated stream that is treated with the oxidizer, you must measure emissions at the outlet of the oxidizer and the high volume dilute stream outlet of the concentrator. (d) For each test run, determine the total gaseous organic emissions mass flow rates for the inlet and the outlet of the add-on control device, using Equation 1 of this section. If there is more than one inlet or outlet to the add-on control device, you must calculate the total gaseous organic mass flow rate using Equation 1 of this section for each inlet and each outlet and then total all of the inlet emissions and total all of the outlet emissions: $$M_f = Q_{sd}C_c[12][0.0416][10^{-6}]$$ (Eq. 1) Where: $M_{\rm f}$ = Total gaseous organic emissions mass flow rate, kg/hour (h). C_c = Concentration of organic compounds as carbon in the vent gas, as determined by Method 25 or Method 25A, ppmv, dry basis. $Q_{\rm sd}$ = Volumetric flow rate of gases entering or exiting the add-on control device, as determined by Method 2, 2A, 2C, 2D, 2F, or 2G, dry standard cubic meters/hour (dscm/h). 0.0416 = Conversion factor for molar volume, kg-moles per cubic meter (mole/m³) (@ 293 Kelvin (K) and 760 millimeters of mercury (mmHg)). (e) For each test run, determine the add-on control device organic emissions destruction or removal efficiency using Equation 2 of this section. $$DRE = \frac{M_{fi} - M_{fo}}{M_{fi}}$$ (Eq. 2) Where: DRE = Organic emissions destruction or removal efficiency of the add-on control device percent. $M_{\rm fi}$ = Total gaseous organic emissions mass flow rate at the inlet(s) to the add-on control device, using Equation 1 of this section, kg/h. $M_{\rm fo}$ = Total gaseous organic emissions mass flow rate at the outlet(s) of the add-on control device, using Equation 1 of this section, kg/h. (f) Determine the emission destruction or removal efficiency of the addon control device as the average of the efficiencies determined in the three test runs and calculated in Equation 2 of this section. ## § 63.4363 How do I establish the addon control device operating limits during the performance test? During the performance test required by §§63.4340 or 63.4350 and described in §§63.4360, 63.4361, and 63.4362, you must establish the operating limits required by §63.4292 according to this section, unless you have received approval for alternative monitoring and operating limits under §63.8(f) as specified in §63.4292. (a) Thermal oxidizers. If your add-on control device is a thermal oxidizer, establish the operating limits according to paragraphs (a)(1) and (2) of this section. ## **Environmental Protection Agency** - (1) During the performance test, you must monitor and record the temperature at least once every 15 minutes during each of the three test runs. You must monitor the temperature in the firebox of the thermal oxidizer or immediately downstream of the firebox before any substantial heat exchange occurs. - (2) Use the data collected during the performance test to calculate and record the average temperature maintained during the performance test. This average temperature is the minimum operating limit for your thermal oxidizer. - (b) Catalytic oxidizers. If your add-on control device is a catalytic oxidizer, establish the operating limits according to either paragraphs (b)(1) and (2) or paragraphs (b)(3) and (4) of this section. - (1) During the performance test, you must monitor and record the temperature at the inlet to the catalyst bed and the temperature difference across the catalyst bed at least once every 15 minutes during each of the three test runs. - (2) Use the data collected during the performance test to calculate and record the average temperature at the inlet to the catalyst bed and the average temperature difference across the catalyst bed maintained during the performance test. These are the minimum operating limits for your catalytic oxidizer. - (3) As an alternative to monitoring the temperature difference across the catalyst bed, you may monitor the temperature at the inlet to the catalyst bed and implement a site-specific inspection and maintenance plan for your catalytic oxidizer as specified in paragraph (b)(4) of this section. During the performance test, you must monitor and record the temperature just before the catalyst bed at least once every 15 minutes during each of the three test runs. Use the data collected during the performance test to calculate and record the average temperature just before the catalyst bed during the performance test. This is the minimum operating limit for your catalytic oxidizer. - (4) You must develop and implement an inspection and maintenance plan for - your catalytic oxidizer(s) for which you elect to monitor according to paragraph (b)(3) of this section. The plan must address, at a minimum, the elements specified in paragraphs (b)(4)(i) through (iii) of this section. - (i) Annual sampling and analysis of the catalyst activity (*i.e.*, conversion efficiency) following the manufacturer's or catalyst supplier's recommended procedures. - (ii) Monthly inspection of the oxidizer system, including the burner assembly and fuel supply lines for problems and, as necessary, adjust the equipment to assure proper air-to-fuel mixtures. - (iii) Annual internal and monthly external visual inspection of the catalyst bed to check for channeling, abrasion, and settling. If problems are found, you must take corrective action consistent with the manufacturer's recommendations and conduct a new performance test to determine destruction efficiency according to §63.4362. ## § 63.4364 What are the requirements for CPMS installation, operation, and maintenance? - (a) General. If you are using a control device to comply with the emission standards in §63.4290, you must install, operate, and maintain each CPMS specified in paragraphs (c) and (d) and (e) of this section according to the requirements in paragraphs (a)(1) through (8) of this section. You must install, operate, and maintain each CPMS specified in paragraph (b) of this section according to paragraphs (a)(5) through (7) of this section. - (1) Each CPMS must complete a minimum of one cycle of operation for each successive 15-minute period. You must have a minimum of four equally spaced successive cycles of CPMS operation to have a valid hour of data. - (2) You must have valid data from at least 90 percent of the hours during which the process operated. - (3) You must determine the hourly average of all recorded readings according to paragraphs (a)(3)(i) and (ii) of this section. - (i) To calculate a valid hourly value, you must have at least three of four equally spaced data values from that hour from a continuous monitoring